

Therapies in development for Duchenne Focus on gene therapy and exon skipping

Annemieke Aartsma-Rus

September 2025

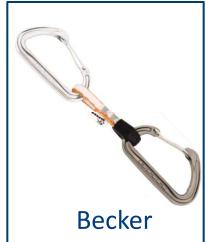
Disclosures

- Employed by Leiden University Medical Center (LUMC), which has patents on exon skipping technology, some of which are licensed to BioMarin and sublicensed to Sarepta. As co-inventor, I am entitled to a share of royalties
- Ad hoc (past) consultant for: AstraZeneca; BioMarin Pharmaceuticals; Dyne; Eisai; Eli Lilly; Galapagos (Alpha Anomeric, Global Guidepoint and GLG consultancy, Grunenthal, Wave and BioClinica); PTC Therapeutics; REGENXBIO; Sarepta Therapeutics; SpliSense; Takeda & Italfarmaco. Remuneration paid to LUMC
- Member of the scientific advisory boards of: Hybridize Therapeutics; Sarepta Therapeutics; Silence Therapeutics & Sapreme. Remuneration paid to LUMC
- LUMC received speaker honoraria from: Alnylam; BioMarin Pharmaceuticals;
 Pfizer; Italfarmaco, PTC Therapeutics

Outline of presentation

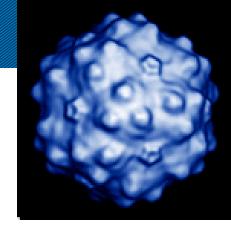
Approaches to restore dystrophin

- Introduction to dystrophin
- Gene therapy
- Exon skipping
- Summary and perspective


Duchenne: no dystrophin

- Dystrophin stabilizes muscle fiber during contraction
- No dystrophin: continuous damage
- Consequence
 - Chronic inflammation
 - Scar tissue (fibrosis and adipose tissue)
 - Regeneration / repair impaired
 - Loss of muscle tissue and function
- Solution: restore dystrophin

Duchenne


But first: Challenges for muscle diseases

- Muscle is very abundant
 - 30-40% of our bodyweight is skeletal muscle
- Muscle is not a single organ
 - We have over 700 skeletal muscles
 - Almost all are affected in Duchenne patients
- Muscle replacement by fat/fibrosis is irreversible
 - Function lost cannot be recovered
 - Time of intervention matters

Gene therapy

Micro-dystrophin and AAV

- Provide functional gene copy (dystrophin) to muscle
- Delivery to muscle is only efficient with AAV
 - No AAV exposure in the past (immunity)
- Small virus → only small genes fit
 - Components:
 - Viral sequences (so it goes in particles)
 - Promotor (volume switch)
 - Dystrophin (micro-dystrophin) code

For Duchenne: minimalist approach

Sarepta & Roche (AAV74)/Genethon (AAV8)

Pfizer (AAV9) (For-Mov)

Solid (AAV9)

ABD
$$\frac{H}{1} \frac{1}{2} \frac{3}{3} \frac{H}{2} \frac{24}{4} \frac{H}{4} \text{ Cys}$$
 CT

RegenXBio (AAV8)

Considerations

- AAV not pathogenic during normal infection
- For Duchenne doses used are very high
- This does cause (severe) side effects
 - Liver has very high exposure
- Immune response will occur
 - Innate & Adaptive
 - This will cause side effects
 - This will prohibit retreatment

Current state of the art all approaches

- Clinical studies Solid, Pfizer, Sarepta/Roche, Regenxbio, Genethon
- Only patients without antibodies for AAV9/7.4/8 included
- General findings >1000 Duchenne patients (trials & commercial)
 - Micro-dystrophin expressed in muscle
 - Side effects
 - Severe to very severe (5 deaths, 3 Pfizer trials, 2 Elevidys)
 - Related to dose (but so are micro-dystrophin levels)
 - Age related (higher dose, worse physical condition)

Side effects: different types and causes

- Acute
 - Nausea, liver damage, kidney failure, sepsis, death
 - Due to immediate (immune) response to AAV
- Later
 - Muscle breakdown (rhabdomyolysis) and myocarditis
 - Immune response to micro-dystrophin
 - Only seen in patients with large deletion at start of gene
 - How come?

Immune response to micro-dystrophin

- Immune system reacts to foreign proteins
- Duchenne patients: no dystrophin

- Why doesn't micro-dystrophin trigger immune response for all?
- Smaller dystrophin isoforms: in >99% of patients
- Start of dystrophin: most patients
- Except those with large deletion in start of gene

Functional effects so far for gene therapy

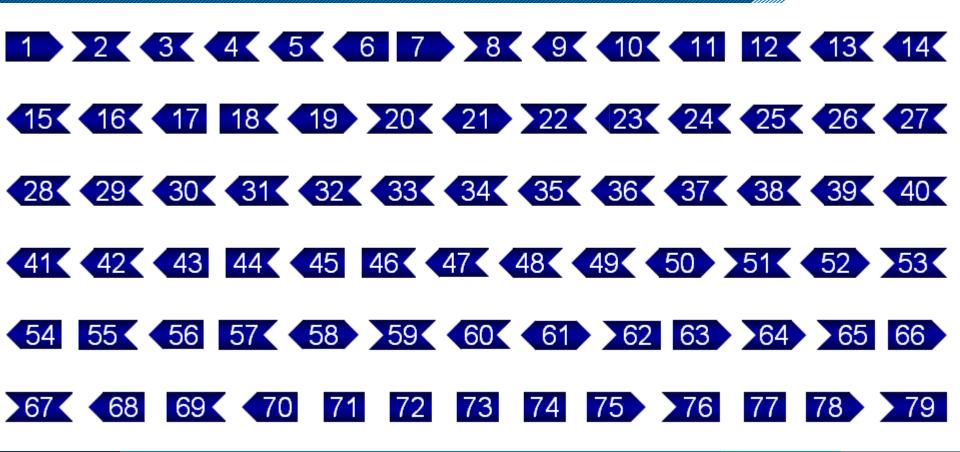
- Clear micro-dystrophin produced in skeletal muscles
- Function seems better than natural history for Elevidys and Pfizer micro-dystrophin (fordadystrogene movaparvovec)
 - But treated patient high dose steroids
- Placebo-controlled data so far
 - Study 1 Elevidys: no difference (but suboptimal dose)
 - Study 2 Elevidys: NSAA primary endpoint not met (48 weeks)
 - Phase 3 study Pfizer did not meet primary endpoint (48 weeks)
 - Phase 3 Elevidys studies Roche/Sarepta ongoing/on hold

Current state of the art Elevidys

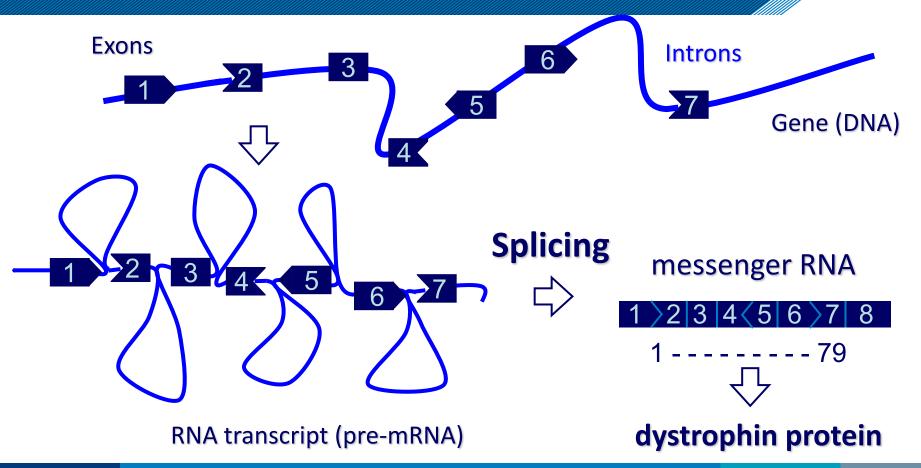
- Elevidys approved and over 800 patients treated
 - CHMP (EMA) did not approve Elevidys (negative opinion, July 2025)
 - Approved in USA, UAE, Bahrain, Qatar, Kuwait, Omam & Japan
 - Ambulatory patients 4 and over
 - Based on dystrophin restoration
 - Confirmatory trial did not meet primary endpoint
 - Secondary endpoints improved (some significantly)
 - Accelerated approval for non ambulatory patients → confirmatory studies to evaluate functional effects (on hold)
 - Deletions should not involve exon 8-9

Challenges

- How functional are micro-dystrophins?
 - Mice/dog vs humans
 - No evidence yet of slower trajectories!
- Longevity of micro-dystrophin expression?
 - Micro-dystrophin levels will go down with time
- Immune response to AAV
 - Cannot treat patients with preexisting antibodies, cannot retreat
- Immune response to micro-dystrophin (selected mutations)
 - Some patients excluded



Future perspective


- Need to monitor treated patients
 - Functional effects?
 - Side effects?
- Ways to delivery larger (more functional) dystrophins (intein system)
- Improve AAVs
 - MyoAAV (Solid)
 - Other delivery methods (nanoparticles, early stage)
- Allow treatment of all patients
 - Reduce immunogenicity micro-dystrophin
 - Study how to treat patients with preexisting AAV immunity (ongoing)

Exon Skipping

Dystrophin exons

Dystrophin exons

Frame shift: Duchenne

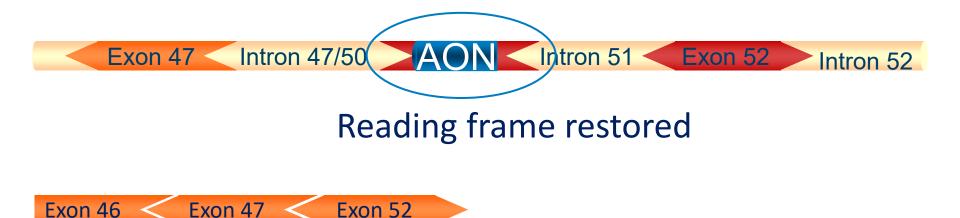
Disrupted reading frame

Protein translation truncated prematurely

Dystrophin not functional

Becker: reading frame maintained

Reading frame not disrupted



Protein translation continues

Dystrophin partly functional

Exon skipping to restore reading frame

Partially functional dystrophin

What are antisense oligonucleotide drugs?

- Small pieces of modified DNA or RNA
 - Synthesized from chemically modified nucleotides
- Target RNA in a sequence specific manner
- Aim: therapeutic effect
 - Knockdown of toxic protein
 - Restoration of missing protein
- Effects are temporary
 - Repeated treatment needed

Current state of the art

- 4 AONs approved (USA/Japan/Israel)
 - Exon 51, 53 & 45 \rightarrow 30% of patients
- Based only on dystrophin restoration at low levels (<1-5%)
- Confirmatory studies to assess effect on disease progression ongoing (Viltolarsen results now in)
- Clear: room for improvement
- Bottleneck: delivery to muscle and heart applicability

To consider: dystrophin levels

- Trials mention dystrophin levels
- Most patients make some dystrophin
 - So measure increase after treatment vs baseline
- Difficult to compare between companies
 Slight variations in methods, normalizing etc
 Variation in when biopsy taken in trial
- Differences for different exons
 Exon 44 skipping seems easier

Exon skipping

- How to improve?
 - Chemistry
 - Improving delivery in general
 - Improving delivery to muscle
 - Antisense gene

Validation and additional exons for PMO

- FDA approved ASO based on dystrophin restoration, weekly IV
- FDA asked for confirmatory studies; also crucial for EMA approval
- Currently evaluated (trials ongoing, fully recruited)
 - Sarepta (eteplirsen (51), golodirsen (53), casimersen (45)
 - MISS510N (51)
 - ESSENCE (45 & 53)
 - NS Pharma (viltolarsen (53))
 - RACER53X: no difference in trajectory after 1 year
- NS Pharma brogodirsen (44 skipping): 10-15% dystrophin increase
- NS Pharma exon 50 skipping trial ongoing

Chemical modifications

- Use different chemical modifications
 - Improve affinity of ASO to target → better efficiency
 - Improve circulation time in blood
 - Reduce dosing frequency
- Currently evaluated by
 - BioMarin (BMN351) exon 51 trial recruiting
 - SQY51 (tcDNA) exon 51 trial recruiting
 - Wave (WVE-531) exon 53 trial ongoing

So far results: 5.5% increase dystrophin

Improving delivery in general

- Use arginine rich peptides
 - Improve delivery to all tissues (also muscle)
 - Therapeutic index: what comes first efficiency or toxicity?
- Currently evaluated by

•	Sarepta (vesleteplirsen)	exon 51	development stopped
•	Pepgen	exon 51	develoment stopped
•	Entrada	exon 44	trial ongoing
		exon 45	trial ongoing
		exon 50	trial planned

Improving delivery to muscle and heart

- Use receptor for transferrin (transferrin receptor 1)
 - Improve delivery to muscle and heart
 - Challenge: reaction to antibodies possible, infusion reactions
- Currently evaluated by
 - Avidity (AOC1044)* exon 44 Results in/OLE ongoing
 25% increase in dystrophin
 - Dyne (Dyne-251) exon 51 DELIVER Recruiting up to 3.7% increase in dystrophin

^{*}Delpacibart zotadirsen

Exon skipping via antisense 'gene'

- Use AAV to deliver antisense gene, more permanent effect
- U7snRNP used, antisense part targets exon 2
- Tested in 3 patients with exon 2 duplication (Kevin Flanigan)
 - <10 dystrophin restoration in patient 1 and 2
 - >80% dystrophin in patient 3 (treated as an infant)
- Challenge
 - Safety concerns AAV (preexisting immunity, side effects)
 - Developing antisense gene for different mutations
 - Currently no ongoing effort to further this

Exon skipping summary

- Approved exon skipping approaches require weekly intravenous dosing with high doses
- Clinicial trials ongoing to
 - Assess functional effects of approved appraoches
 - Evaluate improved approaches (lower doses, less frequent dosing)
- NB: Becker-type dystrophins produced
- Mutation specific approach: focus on exons where skipping applies to larger cohorts for now

Summary dystrophin restoring approaches

- Possible to restore dystrophin with exon skipping & AAV-microdystrophin, but room for improvement
- Treatments do not restore normal dystrophin (pathology continues)
- Pathology targeting approaches approved (vamorolone and givinostat)
- Future: likely combination therapy

All therapies are applied on top of multidisciplinary care!

